Строительство и ремонт. Водоснабжение. Выгребная яма. Дача. Забор. Коммуникации. Крыша

Строительство и ремонт. Водоснабжение. Выгребная яма. Дача. Забор. Коммуникации. Крыша

» » Тригонометрическое уравнение вида cosx a. Решение тригонометрических уравнений

Тригонометрическое уравнение вида cosx a. Решение тригонометрических уравнений

Тип урока: постановка учебной задачи.

Цели урока:

Образовательная : систематизировать знания обучающихся о методах решения простейших тригонометрических уравнений, закрепить навыки работы с окружностью и таблицей.

Развивающая : продолжить работу над формированием творческих интеллектуальных способностей обучающихся через использование разнообразных приёмов решения тригонометрических уравнений.

Воспитательная : развить навыки коллективной умственной деятельности, взаимной поддержки и принятия точки зрения, отличной от собственной.

Ход урока

1. Ситуация успеха.

Решить уравнение: cosx=1; cosx=0; cosx= -1.


2. Ситуация, разрыва” между знанием и незнанием.

Решить уравнение: cosx=½; cosx=a.

Обсуждение.

3. Постановка учебной задачи.

Как решить уравнение данного вида?

1) Чему равна абсцисса точки единичной окружности полученная поворотом точки (1;0) вокруг начала координат на угол равный: ?

2). Чему равен: ?

Ответ:

3).Чему равно: .

Ответ:

;

;

(1) .

Слова учителя: математики назвали слова, обратно cos “ словом арккосинус (arccos). Арккосинусом числа называется такое число , косинус которого равен a:
arccosa=α,если cosα=a и 0≤α≤π.

4). Записать равенство (1) с использованием символа arccos .

5). Решить уравнения: cosx=½, cosx=α.

Ответ: x=arccos½, x=arccosa.

6). Назвать углы поворота точки (1;0) единичной окружности имеющие абсциссу равную ½.

Ответ: абсцисса равна ½ при повороте точки на угол равный π/3 и -π/3.

т.е cosx=½ при x=±arccos½
cosx=a при x=±arccosa.

7). Чему равны абсциссы точек полученных поворотом точки (1;0) на углы: π/3+2π; π/3+6π; -π/3+4π; -π/3+8π; π/3+2πn; -π/3+2πn.

Ответ: абсцисса равна ½, и cosx=½ при x=±arccos½+2πn,.
cosx=a при x=±arccosa+2πn,.

8). Вывод: уравнение cosx=a

1) имеет корни, если ≤1,
2) не имеет корней, если >1.

9). Итог урока:

a) При каких значениях а и α имеет смысл равенство arccosа=α?
б) Что называется арккосинусом числа а?
в) При каких значениях а уравнение cosx=а имеет корни?
г) Формула нахождения корней уравнения cosx=а.


Примеры:

\(2\sin{⁡x} = \sqrt{3}\)
tg\({3x}=-\) \(\frac{1}{\sqrt{3}}\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими . Их легко решать с помощью () или специальных формул:


Инфографику о решении простейших тригонометрических уравнений смотри здесь: , и .

Пример . Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac{1}{2}\).
Решение:

Ответ: \(\left[ \begin{gathered}x=-\frac{π}{6}+2πk, \\ x=-\frac{5π}{6}+2πn, \end{gathered}\right.\)\(k,n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Пример . Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Ответ : решений нет.


Пример . Решите тригонометрическое уравнение tg\(⁡x=1\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим окружность)
2) Построим оси \(x\) и \(y\) и ось тангенсов (она проходит через точку \((0;1)\) параллельно оси \(y\)).
3) На оси тангенсов отметим точку \(1\).
4) Соединим эту точку и начало координат - прямой.
5) Отметим точки пересечения этой прямой и числовой окружности.
6)Подпишем значения этих точек: \(\frac{π}{4}\) ,\(\frac{5π}{4}\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\)\(\frac{π}{4}\) \(+πk\), \(k∈Z\).

Пример . Решите тригонометрическое уравнение \(\cos⁡(3x+\frac{π}{4})=0\).
Решение:


Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\)\(\frac{π}{2}\),\(\frac{π}{2}\) .
6)Выпишем все значение этих точек и приравняем их к косинуса (к тому что внутри косинуса).

\(3x+\)\(\frac{π}{4}\) \(=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(+2πk\) \(3x+\)\(\frac{π}{4}\) \(=-\)\(\frac{π}{2}\) \(+2πk\)

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac{1}{4}\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

\(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\) \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\)
\(3x=\)\(\frac{π}{4}\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac{3π}{4}\) \(+2πk\) \(|:3\)
\(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\)

Ответ: \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и , и особые методы решений уравнений:
- Метод (самый популярный в ЕГЭ).
- Метод .
- Метод вспомогательных аргументов.


Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример . Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное . Можно его решить с помощью .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac{5-3}{4}\) \(=\)\(\frac{1}{2}\) ; \(t_2=\)\(\frac{5+3}{4}\) \(=2\)

Делаем обратную замену.

\(\cos⁡x=\)\(\frac{1}{2}\); \(\cos⁡x=2\)

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на в этих точках.

Ответ: \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ) . Решите тригонометрическое уравнение \(=0\)

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Есть дробь и есть котангенс – значит надо записать . Напомню, что котангенс это фактически дробь:

ctg\(x=\)\(\frac{\cos⁡x}{\sin⁡x}\)

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

ОДЗ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac{π}{2}\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Отметим «нерешения» на числовой окружности.

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Избавимся в уравнении от знаменателя, умножив его на ctg\(x\). Мы можем это сделать, так как выше написали, что ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡{2x}=0\)

Применим формулу двойного угла для синуса: \(\sin⁡{2x}=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: \(x^2+1,5^x\)). Вместо этого вынесем \(\cos⁡x\) за скобки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Расщепим» уравнение на два.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на \(2\) и перенесем \(\sin⁡x\) в правую часть.

\(x=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
Второе уравнение типичное . Поделим его на \(\sin⁡x\) (\(\sin⁡x=0\) не может быть решением уравнения т.к. в этом случаи \(\cos⁡x=1\) или \(\cos⁡x=-1\)).

Опять используем окружность.


\(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\)

Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

Ответ: \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\).

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Захарова Людмила Владимировна
МБОУ «Средняя общеобразовательная школа № 59» г. Барнаула
учитель математики
[email protected]

1 Простейшие тригонометрические уравнения

Цель: 1. Вывести формулы решений простейших тригонометрических уравнений вида sinx =a, cosx=a, tgx=a, ctgx=a;

2. Научиться решать простейшие тригонометрические уравнения с помощью формул.

Оборудование: 1) Таблицы с графиками тригонометрических функций у= sinx, у=cosx, у=tgx, у=ctgx; 2) Таблица значений обратных тригонометрических функций; 3) Сводная таблица формул для решения простейших тригонометрических уравнений.

План урока-лекции :

1 .Вывод формул корней уравнения

а ) sinx =a,

б ) cosx=a ,

в ) tgx=a ,

г) ctgx=а .

2 . Устная фронтальная работа по закреплению полученных формул.

3 . Письменная работа по закреплению изученного материала

Ход урока.

В алгебре, геометрии, физике и других предметах мы сталкиваемся с разнообразными задачами, решение которых связано с решением уравнений. Мы изучили свойства тригонометрических функций, поэтому естественно обратиться к уравнениям, в которых неизвестное содержится под знаком функций

Определение: Уравнения вида sinx = a , cosx = a , tgx = a , ctgx = а называются простейшими тригонометрическими уравнениями.

Очень важно научиться решать простейшие тригонометрические уравнения, так как все способы и приемы решения любых тригонометрических уравнений заключается в сведении их к простейшим.

Начнем с того, что выведем формулы, которые «активно» работают при решении тригонометрических уравнений.

1.Уравнения вида sinx =a .

Решим уравнение sinx =a графически. Для этого в одной системе координат построим графики функций у=sinx и у=а.

1) Если а > 1 и а sin х=а не имеет решений, так как прямая и синусоида не имеют общих точек.

2) Если -1а а пересечет синусоиду бесконечно много раз. Это означает, что уравнение sinx=a имеет бесконечно много решений.

Так как период синуса равен 2, то для решения уравнения sinx=a достаточно найти все решения на любом отрезке длины 2.

Решением уравнения на [-/2; /2] по определению арксинуса х= arcsin a , а на х=-arcsin a . Учитывая периодичность функции у=sinx получим следующие выражения

х = -arcsin a +2n, n Z.

Обе серии решений можно объединить

Х = (-1) n arcsin a +n, nZ.

В следующих трех случаях предпочитают пользоваться не общей формулой, а более простыми соотношениями:

Если а =-1, то sin x =-1, х=-/2+2n

Если а =1, то sin x =1, x =/2+2n

Если а= 0, то sin x =0. x = n,

Пример: Решить уравнение sinx =1/2.

Составим формулы решений x=arcsin 1/2+ 2n

Х= - arcsin a+2n

Вычислим значение arcsin1/2. Подставим найденное значение в формулы решений

х= 5/6+2 n

или по общей формуле

Х= (-1) n arcsin 1/2+n,

Х= (-1) n /6+n,

2. Уравнения вида cosx=a .

Решим уравнение cosx=a также графически, построив графики функций у= cosx и у=а .

1) Если а 1, то уравнение cosx=a не имеет решений, так как графики не имеют общих точек.

2) Если -1a cosx=a имеет бесконечное множество решений.

Найдем все решения cosx=a на промежутке длины 2 так как период косинуса равен 2.

На решением уравнения по определению арккосинуса будет х= arcos a. Учитывая четность функции косинус решением уравнения на [-;0] будет х=-arcos a .

Таким образом решения уравнения cosx=a х=+ arcos a + 2 n,

В трех случаях будем пользоваться не общей формулой, а более простыми сотношениями:

Если а =-1, то cosx =-1, x =-/2+2n

Если а =1, то cosx =1, x = 2n,

Если а=0, то cosx =0. x =/2+n

Пример: Решить уравнение cos x =1/2,

Составим формулы решений x=arccos 1/2+ 2n

Вычислим значение arccos1/2.

Подставим найденное значение в формулы решений

X=+ /3+ 2n, nZ.

    Уравнения вида tgx=a .

Так как период тангенса равен , то для того чтобы найти все решения уравнения tgx=a , достаточно найти все решения на любом промежутке длины . По определению арктангенса решение уравнения на (-/2; /2) есть arctga . Учитывая период функции все решения уравнения можно записать в виде

х= arctg a + n, nZ.

Пример: Решите уравнение tg x = 3/3

Составим формулу для решения х= arctg 3/3 +n, nZ.

Вычислим значение арктангенса arctg 3/3= /6, тогда

Х=/6+ n, nZ.

Вывод формулы для решения уравнения с tgx = a можно предоставить учащимся.

Пример.

Решить уравнение ctg х = 1.

х = arcсtg 1 + n, nZ,

Х = /4 + n, nZ.

В результате изученного материала учащиеся могут заполнить таблицу:

«Решение тригонометрических уравнений».

уравнение

Упражнения для закрепления изученного материала.

    (Устно) Какие из записанных уравнений можно решить по формулам:

а ) х= (-1) n arcsin a +n, nZ;

б ) х=+ arcos a+ 2 n?

cos x = 2/2, tg x= 1 , sin x = 1/3, ctg x = 3/3, sin x = -1/2, cos x= 2/3, sin x = 3 , cos x = 2.

Какие из перечисленных уравнений не имеют решений?

    Решите уравнения:

а) sin x = 0; д) sin x = 2/2; з) sin x = 2;

б) cos x = 2/2; е) cos x = -1/2; и) cos x = 1;

г) tg x = 3; ж) ctg x = -1; к) tg x = 1/ 3.

3. Решите уравнения:

а) sin 3x = 0; д) 2cos x = 1;

б) cos x/2 =1/2; е) 3 tg 3x =1;

г) sin x/4 = 1; ж) 2cos(2x+ /5) = 3.

При решении данных уравнений полезно записать правила для решения уравнений вида sinв x =a , и с sinв x =a , | a |1.

Sinв x =a, |a|1.

в х = (-1) n arcsin a +n, nZ,

х= (-1) n 1/в arcsin a +n/в , nZ.

Подведение итогов занятия:

    Сегодня на занятии мы вывели формулы для решения простейших тригонометрических уравнений.

    Разобрали примеры решения простейших тригонометрических уравнений.

    Заполнили таблицу, которую будем использовать для решения уравнений.

Домашнее задание.

2 Решение тригонометрических уравнений

Цель: Изучить методы решения тригонометрических уравнений:1) приводимых к квадратным;2) приводимых к однородным тригонометрическим уравнениям.

Развивать у учащихся наблюдательность при применении различных способов решения тригонометрических уравнений.

    Фронтальная работа с учащимися .

    Назовите формулы корней тригонометрических уравнений cos x=a , sin x=a , tgx = a , ctg x = a .

    Решите уравнения (устно):

cos x=-1, sin x=0, tgx =0, ctg x=1, cos x=1,5, sin x=0.

    Найдите ошибки и подумайте о причинах ошибок.

cos x=1/2, х=+ /6+2k, kZ.

sin x= 3/2, х= /3+k, kZ.

tgx = /4, x=1+ k, kZ.

2. Изучение нового материала.

На данном занятии будут рассмотрены некоторые наиболее часто встречающиеся методы решения тригонометрических уравнений.

Тригонометрические уравнения, приводимые к квадратным.

К этому классу могут быть отнесены уравнения, в которые входят одна функция (синус или косинус) или две функции одного аргумента, но одна их них с помощью основных тригонометрических тождеств сводится ко второй.

Например, если cоsх входит в уравнение в четных степенях, то заменяем его на 1- sin 2 x, если sin 2 x, то его заменяем на 1-cos 2 x.

Пример.

Решить уравнение: 8 sin 2 x - 6sin x -5 =0.

Решение: Обозначим sin x=t, тогда 8t 2 - 6t – 5=0,

D= 196,

T 1 = -1/2, t 2 = -5/4.

Выполним обратную замену и решим следующие уравнения.

Х=(-1) к+1 /6+ k, kZ.

Так как -5/4>1, то уравнение не имеет корней.

Ответ: х=(-1) к+1 /6+ k, kZ.

Решение упражнений на закрепление.

Решить уравнение:

1) 2sin 2 x+ 3cos x = 0;

2) 5sin 2 x+ 6cos x -6 = 0;

3) 2sin 2 x+ 3cos 2 x = -2sin x;

4) 3 tg 2 x +2 tgx-1=0.

Однородные тригонометрические уравнения.

Определение: 1) Уравнение вида a sinx + b cosx =0, (а=0, в=0) называется однородным уравнением первой степени относительно sin x и cos x.

Решается данное уравнение с помощью деления обеих его частей на cosx 0. В результате получается уравнение atgx+ b=0.

2) Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x =0 называется однородным уравнением второй степени, где a, b, c какие-либо числа.

Если а=0, то уравнение решаем делением обеих частей на cos 2 x 0. В результате получаем уравнение atg 2 x+ btgx+с =0.

Замечание: Уравнение вида a sin mx + b cos mx =0 или

a sin 2 mx + b sin mx cos mx + c cos 2 mx =0 также являются однородными. Для их решения обе части уравнения делят на cos mx =0 или cos 2 mx =0

3) К однородным уравнениям могут быть сведены различные уравнения, которые первоначально не являются такими. Например, sin 2 mx + b sin mx cos mx + c cos 2 mx = d , и a sinx + b cosx = d . Для решения этих уравнений необходимо умножить правую часть на « тригонометрическую единицу» т.е. на sin 2 x + cos 2 x и выполнить математические преобразования.

Упражнения на закрепление изученного материала:

1) 2sin x- 3cos x = 0; 5) 4 sin 2 x – sin2x =3;

2) sin 2x+ cos2x = 0; 6) 3 sin 2 x + sinx cosx =2 cos 2 x ;

3) sin x+ 3cos x = 0; 7) 3 sin 2 x- sinx cosx =2;

4) sin 2 x -3 sinx cosx +2 cos 2 x =0

3.Подведение итогов урока. Домашнее задание.

На данном занятии в зависимости от подготовленности группы можно рассмотреть решение уравнений вида a sin mx +b cos mx=с, где а, b,с не равны нулю одновременно.

Упражнения на закрепление:

1. 3sin x + cos x=2;

2. 3sin 2x + cos 2x= 2;

3. sin x/3 + cos x/3=1;

4. 12 sin x +5 cos x+13=0.

3 Решение тригонометрических уравнений

Цель: 1) Изучить метод решения тригонометрических уравнений разложением на множители; научиться решать тригонометрические уравнения с использованием различных тригонометрических формул;

2) Проконтролировать: знание учащимися формул для решения простейших тригонометрических уравнений; умение решать простейшие тригонометрические уравнения.

План занятия:

    Проверка домашнего задания.

    Математический диктант.

    Изучение нового материала.

    Самостоятельная работа.

    Подведение итогов занятия. Домашнее задание.

Ход занятия:

    Проверка домашнего задания (решение тригонометрических уравнений кратко записаны на доске).

    Математический диктант.

В-1

1. Какие уравнения называются простейшими тригонометрическими уравнениями?

2. Как называется уравнение вида a sinx +b cosx=0? Укажите способ его решения.

3.Запишите формулу корней уравнения tgx = a (ctg x=a ).

4. Запишите формулы корней уравнений вида cosx=a , где а =1, а =0, а =-1.

5. Запишите общую формулу корней уравнения sin x=a , | a |

6. Как решаются уравнения вида a cosx=b , | b |

В-2

1. Запишите формулы корней уравнений cosx=a ,| a |

2. Запишите общую формулу корней уравнения

= a , | a |

3. Как называются уравнения вида sin x=a , tgx = a , sin x=a ?

4.Запишите формулы корней уравнения sin x=a , если а =1, а =0, а =-1.

5.Как решаются уравнения вида sin a x=b , | b |

6. Какие уравнения называются однородными уравнениями второй степени? Как они решаются?

    Изучение нового материала.

Метод разложения на множители.

Одним из наиболее употребительных методов решения тригонометрических уравнений является метод разложения на множители.

Если уравнение f(x) =0 можно представить в виде f 1 (x) f 2 (x) =0 , то задача сводится к решению двух уравнений f 1 (x)=0, f 2 (x) =0.

(С учащимися полезно вспомнить правило «Произведение множителей равно нулю, если хотя бы один из множителей равен нулю, а другие при этом имеют смысл »)

    Закрепление изученного материала через решение уравнений различной сложности.

    (sin x-1/2)(sin x+1)=0; 2) (cosx- 2/2)(sin x+ 2/2)=0;(самост.)

3) sin 2 x+ sin x cosx=0; 4) sin 2 x- sin x =0;

5) sin 2x – cosx=0; 6) 4 cos 2 x -1 =0; (2-мя способами)

7) cosx+ cos3x=0; 8) sin 3x= sin 17x;

9) sin x+ sin 2x+ sin 3x=0; 10) cos3x cos5x

11) sin x cos5x =sin 9x cos3x sin 2x sin 2x

12) 3 cosx sin x+ cos 2 x=0(самост.)

13) 2 cos 2 x - sin (x- /2)+ tgx tg (x+/2)=0.

    Самостоятельная работа.

Вариант-1 Вариант-2

1) 6 sin 2 x+ 5sin x -1=0; 1) 3 cos 2 x+2 cosx -5=0;

2) sin 2x – cos2x=0; 2) 3 cos x/2 - sin x/2=0;

3) 5 sin 2 x+ sin x cosx -2 cos 2 х=2; 3) 4sin 2 x- sin x cosx +7cos 2 х=5;

4) sin x+sin5x=sin3x+sin7x; 4) sin x-sin 2x +sin 3x-sin 4x=0;

5) sin x+cosx=1. 5) sin x+cosx=2.

8. Подведение итогов урока. Домашнее задание.

Мы знаем, что значения косинуса заключены в промежутке [-1; 1], т.е. -1 ≤ cos α ≤ 1. Поэтому если |а| > 1, то уравнение cos x = а не имеет корней. Например, уравнение cos x = -1,5 корней не имеет.

Рассмотрим несколько задач.

Решить уравнение cos x = 1/2.

Решение.

Вспомним, что cos x – это абсцисса точки окружности с радиусом, равным 1, полученной в результате поворота точки Р (1; 0) на угол х вокруг начала координат.

Абсцисса 1/2 есть у двух точек окружности М 1 и М 2 . Так как 1/2 = cos π/3, то точку М 1 мы можем получить из точки Р (1; 0) путем поворота на угол х 1 = π/3, а также на углы х = π/3 + 2πk, где k = +/-1, +/-2, …

Точка М 2 получается из точки Р (1; 0) поворотом на угол х 2 = -π/3, а также на углы -π/3 + 2πk, где k = +/-1, +/-2, …

Итак, все корни уравнения cos x = 1/2 можно найти по формулам
х = π/3 + 2πk
х = -π/3 + 2πk,

Две представленные формулы можно объединить в одну:

х = +/-π/3 + 2πk, k € Z.

Решить уравнение cos x = -1/2 .

Решение.

Абсциссу, равную – 1/2 , имеют две точки окружности М 1 и М 2 . Так как -1/2 = cos 2π/3, то угол х 1 = 2π/3, а потому угол х 2 = -2π/3.

Следовательно, все корни уравнения cos x = -1/2 можно найти по формуле: х = +/-2π/3 + 2πk, k € Z.

Таким образом, каждое из уравнений cos x = 1/2 и cos x = -1/2 имеет бесконечное множество корней. На отрезке 0 ≤ х ≤ π каждое из этих уравнений имеет только один корень: х 1 = π/3 – корень уравнения cos x = 1/2 и х 1 = 2π/3 – корень уравнения cos x = -1/2.

Число π/3 называют арккосинусом числа 1/2 и записывают: arccos 1/2 = π/3, а число 2π/3 – арккосинусом числа (-1/2) и записывают: arccos (-1/2) = 2π/3.

Вообще уравнение cos x = а, где -1 ≤ а ≤ 1, имеет на отрезке 0 ≤ х ≤ π только один корень. Если а ≥ 0, то корень заключен в промежутке ; если а < 0, то в промежутке (π/2; π]. Этот корень называют арккосинусом числа а и обозначают: arccos а.

Таким образом, арккосинусом числа а € [-1; 1 ] называется такое число а € , косинус которого равен а:

arccos а = α, если cos α = а и 0 ≤ а ≤ π (1).

Например, arccos √3/2 = π/6, так как cos π/6 = √3/2 и 0 ≤ π/6 ≤ π;
arccos (-√3/2) = 5π/6, так как cos 5π/6 = -√3/2 и 0 ≤ 5π/6 ≤ π.

Аналогично тому, как это сделано в процессе решения задач 1 и 2, можно показать, что все корни уравнения cos x = а, где |а| ≤ 1, выражаются формулой

х = +/-arccos а + 2 πn, n € Z (2).

Решить уравнение cos x = -0,75.

Решение.

По формуле (2) находим, х = +/-arccos (-0,75) + 2 πn, n € Z.

Значение arcos (-0,75) можно приближенно найти на рисунке, измерив угол при помощи транспортира. Приближенные значения арккосинуса также можно находить с помощью специальных таблиц (таблицы Брадиса) или микрокалькулятора. Например, значение arccos (-0,75) можно вычислить на микрокалькуляторе, получив приблизительное значение 2,4188583. Итак, arccos (-0,75) ≈ 2,42. Следовательно, arccos (-0,75) ≈ 139°.

Ответ: arccos (-0,75) ≈ 139°.

Решить уравнение (4cos x – 1)(2cos 2x + 1) = 0.

Решение.

1) 4cos x – 1 = 0, cos x = 1/4, х = +/-arcos 1/4 + 2 πn, n € Z.

2) 2cos 2x + 1 = 0, cos 2x = -1/2, 2х = +/-2π/3 + 2 πn, х = +/-π/3 + πn, n € Z.

Ответ. х = +/-arcos 1/4 + 2 πn, х = +/-π/3 + πn.

Можно доказать, что для любого а € [-1; 1] справедлива формула arccos (-а) = π – arccos а (3).

Эта формула позволяет выражать значения арккосинусов отрицательных чисел через значения арккосинусов положительных чисел. Например:

arccos (-1/2) = π – arccos 1/2 = π – π/3 = 2π/3;

arccos (-√2/2) = π – arсcos √2/2 = π – π/4 = 3π/4

из формулы (2) следует, что корни уравнения, cos x = а при а = 0, а = 1 и а = -1 можно находить по более простым формулам:

cos х = 0 х = π/2 + πn, n € Z (4)

cos х = 1 х = 2πn, n € Z (5)

cos х = -1 х = π + 2πn, n € Z (6).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.